A Parallel Algorithm for Computing the Extremal Eigenvalues of Very Large Sparse Matrices

نویسنده

  • Fredrik Manne
چکیده

Abs t rac t . Quantum mechanics often give rise to problems where one needs to find a few eigenvalues of very large sparse matrices. The size of the matrices is such that it is not possible to store them in main memory but instead they must be generated on the fly. In this paper the method of coordinate relaxation is applied t o o n e class of such problems. A parallel algorithm based on graph coloring is proposed. Experimental results on a Cray Origin 2000 super computer show that the algorithm converges fast and that it also scales well as more processors are applied.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices

In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...

متن کامل

Computing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method

A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...

متن کامل

A Parallel Quasi-Monte Carlo Method for Computing Extremal Eigenvalues

1 Florida State University, Department of Computer Science, Tallahassee, FL 32306-4530, USA 2 Bulgarian Academy of Sciences, Central Laboratory for Parallel Processing, 1113 Sofia, Bulgaria Abstract The convergence of Monte Carlo methods for numerical integration can often be improved by replacing pseudorandom numbers (PRNs) with more uniformly distributed numbers known as quasirandom numbers (...

متن کامل

Some new restart vectors for explicitly restarted Arnoldi method

The explicitly restarted Arnoldi method (ERAM) can be used to find some eigenvalues of large and sparse matrices. However, it has been shown that even this method may fail to converge. In this paper, we present two new methods to accelerate the convergence of ERAM algorithm. In these methods, we apply two strategies for the updated initial vector in each restart cycles. The implementation of th...

متن کامل

Estimating the Largest Singular Values/Vectors of Large Sparse Matrices via Modified Moments

This dissertation considers algorithms for determining a few of the largest singular values and corresponding vectors of large sparse matrices by solving equivalent eigenvalue problems. The procedure is based on a method by Golub and Kent for estimating eigenvalues of equvalent eigensystems using modified moments. The asynchronicity in the computations of moments and eigenvalues makes this meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998